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SUMMARY

To examine the time-dependent e�ects of exposure histories on disease we use sliding time windows as an
exploratory alternative to the analysis of variables like time since last exposure and duration of exposure.
The method �ts a series of risk models which contain total cumulative exposure and an additional covariate
for exposures received during �xed time intervals. Characteristics of the �tted models provide insight into
the inuence of exposure increments at di�erent times on disease risk. A simulation study is performed to
check the validity of the approach. We apply the method to data from a recent German case-control study
on smoking and lung cancer risk with about 4300 lung cancer cases and a similiar number of controls. The
sliding time window approach indicates that the amount of cigarettes smoked from two to 11 years before
disease incidence is most predicitive of lung cancer incidence. Among di�erent smoking pro�les that result in
the same lifelong cumulative number of cigarettes smoked, those with a concentration of smoked cigarettes
within 20 years before interview bear substantially larger risk than others. Copyright ? 2000 John Wiley &
Sons, Ltd.

1. INTRODUCTION

We present an exploratory method to evaluate the time-dependent e�ects of exposure histories on
a binary disease outcome in a case-control setting. The motivation for such an approach comes
from studies of acute exposures, where time since exposure is clearly de�ned and often has great
inuence on the risk of disease. The study of Japanese atomic bomb survivors is a prime example
[1]. For extended exposures, the de�nition of time since exposure and its relationship to disease
outcome are no longer obvious [2].
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The proposed method �ts a series of risk models which include total cumulative exposure and
an additional covariate for exposure received during a �xed time interval. Characteristics of the
�tted models provide insight into the inuence of exposure increments at di�erent times on disease
risk.
The approach has been previously applied in References [3] and [4]. We present a mathematical

characterization of the method and extend it by adjusting for cumulative exposure and performing
a two-dimensional pro�le likelihood estimation of the best �tting time window. A simulation study
is performed to check the validity of the method.
As an example, we apply the methodology to data from a recent German case-control study on

smoking and lung cancer with about 4300 cases and a similiar number of controls, an association
which has been investigated by various authors [5–7].

2. METHOD: THE SLIDING TIME WINDOW

The method �ts a series of models, which include total cumulative exposure and cumulative
exposure received within a de�ned time interval, often referred to as an exposure time window
(Muller and Kusiak in Reference [2]). Let yj denote the disease status of individual j (j=1; : : : ; n),
and let xj(t) denote the exposure of the jth individual at time t before interview (t ∈ [0; T ]), where
T depends on the length of collected exposure histories. Additional covariates zj =(z1j; : : : ; zmj)′

are used to adjust for confounding.
We sequentially �t models that include cumulative exposure to attained age, A, and cumulative

exposure received during a time interval of �xed width k as covariates. Intervals of various width k
can be considered. For the time window centred at time c before interview, where c∈ [k=2; T−k=2],
we �t the model Mc of the form

logit Pr(yj =1 | zj; xj(t); t ∈ [0; T ])

= �0 + �′zj + �1
∫ Aj

0
xj(t) dt + �2

∫ c+k=2

c−k=2
xj(t) dt (1)

and compute the likelihood ratio test statistic

LRc= − 2 log max�; � L(Mc|�2 = 0)
max�; � L(Mc)

which compares model (1) to the corresponding ‘null’ model without the time window exposure
variable (�2 = 0). The value of c is then varied over its range. For �xed c, parameter �1 represents
the increase in the log-odds ratio (OR) per unit exposure, while �2 represents the additive e�ect
(on a log scale) of a unit exposure that occurred during the speci�c time window of length k
centred at time c. The likelihood ratios between the models with and without the time window,
LRc, can be compared to assess the signi�cance of the additional exposure variable.
The approach is equivalent to a pro�le likelihood estimation of the non-linear parameter c

denoting the time window midpoint of the best �tting time window. To avoid the arbitrary selection
of window width k, the approach can be extended to a two-dimensional pro�le likelihood estimation
of both the width and the position of the best �tting time window. On the other hand, the window
width can be viewed as a smoothing parameter for the series of estimated time window parameters.

Copyright ? 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 19:2185–2194



SLIDING TIME WINDOWS FOR THE ANALYSIS OF TEMPORAL EFFECTS 2187

Since total cumulative exposure may confound the association between a speci�c time window
exposure and disease, it is included in the model. If one prefers to adjust only for exposure during
the time not covered by the time window under consideration, estimates can be easily derived
as the sum of �̂1 and �̂2 of formula (1) for the new time window estimate while leaving the
estimate �̂1 for the lifelong exposure parameter unchanged. The sum of the two parameters is then
interpreted as the exclusive e�ect of exposure during the time window in comparison to the e�ect
�1 of exposures received during all other times.
Model (1) is equivalent to the more general model

logit Pr(yj =1 | zj; xj(t); t ∈ [0; T ])= �0 + �′zj + �1
∫ Aj

0
w(t)xj(t) dt

where the weight function w(·) is given by

w(t)= 1 + �I[c−k=2; c+k=2](t)

and � can be estimated as �̂2=�̂1.

3. EXAMPLE: CASE-CONTROL STUDY ON SMOKING AND LUNG CANCER

We apply the method to data from a case-control study carried out from 1990–1996 in Germany
[8]. Cases include patients aged 75 years and under with histologically con�rmed primary lung
cancer. Controls are population-based and frequency-matched to cases on age (within �ve years),
sex, and place of residence (23 regions).
Data on smoking history are obtained by personal interview. Information on the type and amount

of tobacco products smoked and on inhalation habits are obtained by intervals of constant smoking
habit.
For a cigarette smoker who also smoked cigars, cigarillos or pipes, the tobacco amount equivalent

is added to his exposure from cigarettes. After excluding 174 cigars, cigarillos, or pipes only
smokers and 43 individuals with incomplete smoking histories, the study population includes 4304
cases and 4526 controls.
Preliminary analysis revealed that a log-linear model for the OR provided a better �t than a

linear OR model. Therefore, the former is used throughout the remainder of the text. The odds
ratio for a smoker compared to a never-smoker is 18.19 for males (95 per cent CI: [14:00; 23:62])
and 4.71 for females (95 per cent CI: [3:79; 5:87]) adjusted for asbestos exposure and the matching
variables. Using total cumulative pack-years smoked (1 pack-year = 365× 20 cigarettes), the risk
of lung cancer, relative to a never-smoker, is generally decreasing with categories of years since
quitting smoking (current smoker, 1−4; 5−9; 10+). The odds ratios and corresponding 95 per cent
con�dence intervals are 12.10 [8:99; 16:29], 15.15 [10:91; 21:03], 8.02 [5:72; 11:25], 4.10 [3:10; 5:43]
for males, respectively, and 2.45 [1:64; 3:68], 2.90 [1:68; 4:99], 1.36 [0:75; 2:47], 0.89 [0:61; 1:30]
for females.
The slightly higher risk for individuals who recently quit smoking versus current smokers is

due to the well-known phenomenon that people tend to stop smoking when they start to feel ill
so that current smoking becomes protective compared to having quit recently.
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Figure 1. Results of the sliding �ve-year time window analysis for n = 7094 males. The upper
panel shows the likelihood ratio (solid line, maximum at ĉ = 4) and the �21;0:95-quantile (dashed
line). The lower panel shows the odds ratios per unit pack-year with pointwise 95 per cent con�-
dence bands (exp(�̂1), narrow band) and the multiplicative e�ect of the time window pack-years

(exp(�̂2), wide band), and a reference line at unity (dashed line).

4. RESULTS

For this example, time before interview is taken as discrete, and xj(t) denotes the number of
pack-years smoked by the jth individual (j=1; : : : ; 8830) during year t before interview (t=1; : : : ;
75). Because of the discrete time scale, integration in model (1) is replaced by summation. All
analyses are adjusted for the matching variables and for time since quitting smoking in years
(non-smoker, current smoker, 1−4, 5−9, 10+). Analyses restricted to males only are additionally
adjusted for asbestos exposure (ever=never).
Figures 1 and 2 present the results for men and women, respectively, for model (1) using a

�xed window of width �ve years (k =5). The upper panel shows the likelihood ratio test statistic
LRc that compares the �t of the null model with the adjustment variables and total pack-years of
smoking with the model that additionally includes the cumulative pack-years smoked during the
time window centred at c years prior to age at interview. The lower panel shows the pointwise 95
per cent con�dence intervals of the estimated odds ratios for one cumulative pack-year (narrow
band) and for the cumulative time window pack-years (wide band).
Figure 1 shows that for men the maximum of LRc occurs for the time window from two to

six years before interview, that is, ĉ = 4. The odds ratio for the corresponding time window
indicates a signi�cantly positive extra e�ect, after adjustment for lifelong exposure. In contrast,
the local maximum for the likelihood ratio occurring at 42 years before interview corresponds
to a negative e�ect for pack-years smoked many years ago relative to the overall e�ect of total
cumulative pack-years.
The time window parameter shows an antagonistic behaviour with a positive e�ect for exposures

received within the last 20 years and a negative e�ect for exposures received more than 20 years

Copyright ? 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 19:2185–2194
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Figure 2. Results of the sliding �ve-year time window analysis for n = 1736 females. The
upper panel shows the likelihood ratio (solid line, maximum at ĉ = 25) and the �21;0:95-quantile
(dashed line). The lower panel shows the odds ratios per unit pack-year with pointwise 95 per
cent con�dence bands (exp(�̂1), narrow band) and the multiplicative e�ect of the time window

pack-years (exp(�̂2), wide band), and a reference line at unity (dashed line).

ago. This antagonism will always occur with total pack-years whenever there is a positive time
window e�ect for some segment of the exposure history, since there must be a counter-balancing
negative e�ect for some other segment. The relatively small inuence from estimating the time
window parameter �2 on �1 is due to the greater amount of data used to estimate the �1 value
and thus its greater stability.
For women, Figure 2 shows that the best �t corresponding to a positive contribution of time

window exposure is about four years before interview with a second local maximum at nine years
before interview (corresponding to time windows from two to six years before interview and from
seven to 11 years before interview, respectively). The pattern in females is essentially similiar to
that of men, but with greater uncertainty in the estimates for women due to smaller sample size.
The odds ratio for lifelong exposure again remains rather constant for the di�erent time windows.
Figures 1 and 2 indicate that a speci�c time window model may result in an odds ratio less

than one, that is, less than that of a non-smoker, for a smoker who smokes a high percentage of
his total number of cigarettes within a short time period more than 20 years ago. Such extreme
pro�les are not present in the underlying data, and the estimated odds ratios are highly variable
and would have wide con�dence limits.
The likelihood based on model (1) can be maximized in both c and k. The maximum value

of the likelihood function corresponding to a positive time window parameter estimate is reached
at the one-year time window two years before interview for males as well as for females. The
‘best’ �tting time windows with an associated negative time window parameter estimate are from
six to 56 years before interview and from 24 to 25 years before interview for males and females,
respectively. The results are consistent with the one-dimensional approach.
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Figure 3. Simulation study results of the sliding �ve-year time window analysis based on 1000 generated
case-control studies with 1000 observations (half cases and controls). Data were generated as described in
the text using linearly decreasing weights (shown in the upper panel). The middle panel shows the mean
likelihood ratio (solid line) of the replications and approximate pointwise normal 95 per cent con�dence
intervals (dashed lines). The �21;0:95-quantile (dashed-dotted line) is also shown. The lower panel shows the
pointwise 95 per cent con�dence bands for the simulated odds ratios per unit pack-year (exp(�̂1), narrow

band) and the multiplicative e�ect of the time window pack-years (exp(�̂2), wide band).

5. SIMULATION STUDY

A simulation study is performed to check the validity of the method and its robustness with respect
to uncertainties in exposure assessment.
Hypothetical smoking pro�les are generated for up to 60 years prior to interview following

the German smoking data. A weighted cumulative exposure is calculated using di�erent time-
dependent weights: constant; linearly increasing and decreasing; triangle shape; trapezoidal shape.
The response variable is generated using the weighted cumulative exposure within a linear logistic
regression model by sampling a synthetic retrospective study from a prospective study according
to Reference [9].
This procedure results in simulated case-control studies based on �ve scenarios represented by

di�erent hypothetical weights. For each scenario, 1000 case-control studies with 500 cases and
500 controls each are generated. For details of the simulation study design refer to the Appendix.
Figures 3 and 4 show the results of the simulation study for two given hypothetical weights

(upper panels). The approximate normal pointwise 95 per cent con�dence bands of the mean time
window odds ratio from 1000 replications (wide band in the lower panel) are in good accordance
with the given weights and indicate a small simulation variability. The likelihood ratio (middle
panel) yields high values when the absolute value of the time window parameter estimate is largest,
representing the signi�cance of the corresponding time window exposure with respect to the null
model containing total cumulative pack-years only.
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Figure 4. Simulation study results of the sliding �ve-year time window analysis based on 1000 generated
case-control studies with 1000 observations (half cases and controls). Data were generated as described in the
text using triangle shaped weights (shown in the upper panel). The middle panel shows the mean likelihood
ratio (solid line) of the replications and approximate pointwise normal 95 per cent con�dence intervals
(dashed lines). The �21;0:95-quantile (dashed-dotted line) is also shown. The lower panel shows the pointwise
95 per cent con�dence bands for the simulated odds ratios per unit pack-year (exp(�̂1), narrow band) and

the multiplicative e�ect of the time window pack-years (exp(�̂2), wide band).

Next we evaluate the e�ects of measurement error. A problem with retrospective collection of
exposure histories is that exposures many years ago may be subject to greater measurement error
than more recent exposures. We examine the sensitivity of the method to time-dependent uncer-
tainties in exposure assessment, with greater uncertainty occurring earlier in exposure histories.
Instead of the generated exposure pro�les x(t); t = 1; : : : ; 60, we use the erroneous pro�les

x̃(t) = x(t)e(t)

where the time-dependent multiplicative measurement error e(t) is uniformly distributed with ex-
pectation one and with variance increasing with time t before interview.
For all hypothetical weights used for data generation and di�erent sizes of error, the erroneous

pro�les yield similiar results to the true pro�les. Also we observe only a very small amount of
attenuation of parameter estimates. Therefore, no illustrations are shown.
In a second approach, we assume that the probability that a person who smoked ‘ years ago

reports not having smoked at that time increases with ‘ independent of disease status.
This type of measurement error causes a remarkable bias of the time window parameter esti-

mate towards the null. The bias increases with increasing probability of erroneously reporting not
to have smoked at certain times. The simulation also shows that such an error results in large
standard errors of estimated coe�cients so that none of the time windows yields a signi�cant
contribution to the model, not even time windows with high weights assigned. No illustrations are
shown.

Copyright ? 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 19:2185–2194
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Both measurement error simulations suggest that the patterns observed in Figures 1 and 2 are
not likely to be a result of measurement errors of these types.

6. DISCUSSION

For the analysis of individual exposure histories, the sliding time window approach presented
here is an alternative to the analysis of time since last exposure and pack-years. It evaluates the
contribution to risk of exposures in increments of prior years.
In general, the approach is not limited to logistic regression models nor is it limited to case-

control studies, and it can be performed with standard statistical software.
Using the sliding time window approach, we �nd that for a �xed number of pack-years the

amount smoked less than 20 years previously is mostly responsible for an increased risk, with
special emphasis on the time windows covering the interval from two to six years before interview.
Cigarettes smoked within this time result in a higher risk than cigarettes smoked more than 20
years before interview.
Quitting smoking means no exposure during the last years before interview. Since all analyses

are adjusted for time since smoking cessation, the decreasing e�ect of time windows with time
before interview cannot be ascribed to the well known decline of risk with time since quitting
smoking. Moreover, the analysis suggests that the e�ect of duration of smoking given a certain
amount of cigarettes smoked depends on the period of exposure.
An extension of the approach is possible by using di�erent time scales, namely time since

exposure (as done here), age at exposure, or calendar year. However, these variables are highly
correlated, so that interpretation of an e�ect may be problematic. As to the example presented,
we can argue as follows. Data were collected retrospectively within a few years, so a major e�ect
of calendar year can be excluded. We performed the sliding time window analysis strati�ed for
attained age on the time since exposure scale. Since the resulting likelihood ratio pattern was
similiar among strata, the e�ects found above can be ascribed to time since exposure.
The simulation study shows the method’s ability to �nd given time patterns of exposure weights.

The sensitivity analysis suggests that the sliding time window approach is rather robust against a
time-dependent multiplicative random measurement error that may corrupt the collected exposure
pro�les.
In our situation, a substantial systematic error in retrospective assessment of exposure histories

causes biased time window parameter estimates with large variances throughout the time scale. In
contrast to this, results based on the real data show a clear and consistent pattern over age and sex
strata with signi�cant estimates for certain time periods. Therefore, it is unlikely that our results
are the consequence of such an error.
In summary, the sliding time window approach adds new information about the inuence of

temporal patterns of smoking habits on lung cancer risk. The approach is easy to implement using
standard software. However, the method is exploratory in nature, and therefore cannot replace
careful modelling of a dose–response relationship.

APPENDIX: SIMULATION STUDY DESIGN

Hypothetical smoking pro�les are generated for up to 60 years prior to interview following the Ger-
man smoking data. With probability 0.25, an individual is considered to be a lifelong non-smoker.
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With probability 0.75, the number of pack-years smoked during the year prior to interview is taken
from the following distribution

xi(1)= max(0; 0:47 + 0:3672 vi); i=1; : : : ; n (A1)

where vi ∼ N(0; 1). The truncated normal distribution is chosen so that the expectation of its
untruncated counterpart equals the mean yearly exposure rate in the German smoking data and
that the probability of zero exposure is 0.1.
Changes in smoking rates over time are modelled as follows. With a 50 per cent chance of

change in 10 years we de�ne the probability pt of a change in smoking rate at year t before
interview such that

0:5= (1− pt)10:
If the subject has changed smoking rate, then we resample a new smoking rate from distribution
(A1).
Given time-dependent weights w(t), we generate the response using the weight function model

logit Pr(yj =1|xj(t); t ∈ [0; T ])= �0 + �1
T∑
t=1
w(t)xi(t) (A2)

with given parameter values �0 and �1.
We use several simple weight functions w(t): constant; linearly increasing and decreasing; tri-

angle shape; trapezoidal shape. They are all standardized so that their integral on [0; T ] is unity.
A value for �1 is chosen from the case-control data. Since the time-weighted exposure

∑
w(t)x(t)

is related to exposure rate, we substitute the log odds ratio estimated from the empirical data,
log ÔR =3:163, for �1.
For case-control data, �0 is the log odds of being a case for a never-smoker, that is, at x(t)= 0

for all t=1; : : : ; T . Since we have half cases and half controls in our study, we set the probability
of being a case at mean exposure to one half, that is

Pr(y=1 | �x)= 0:5⇐⇒ �0 = − �1 �x:
With a mean exposure rate of �x = 0:47 pack-years, we have �0 = − 1:49.
The response generation imitates a synthetic retrospective study sampled from a prospective

study according to Reference [9]. To generate cases, we perform a Bernoulli experiment for each
candidate pro�le with probability of success Pr(yj =1 | xj(t); t ∈ [0; T ]) of model (3). If the exper-
iment is successful, the candidate pro�le is added to our simulated data set as a case pro�le. If
not, we take the next candidate pro�le. For controls, a candidate pro�le enters the data set, if the
experiment fails, and is rejected otherwise.
The generated exposure pro�les are corrupted in two ways to imitate uncertainties in exposure

assessment. First, instead of the generated exposure pro�les x(t), t=1; : : : ; 60, we use the erroneous
pro�les

x̃(t)= x(t)e(t)

where the time-dependent multiplicative measurement error e(t) is uniformly distributed according
to

e(t) ∼ U
[
1− t(1− p)

60
; 1 +

t(1− p)
60

]
:
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The measurement error distribution is ‘linearly increasing’ in time t from U[1; 1] at interview to
U[p; 2− p] at 60 years before interview for p=0; 0:25; 0:5; 0:75; 1.
Secondly, we assume that a person who smoked ‘ years ago reports not having smoked at that

time with increasing probability as ‘ increases. Therefore, the erroneous pro�les

x̃(t)= x(t)e(t)

are used, where e(t) is a Bernoulli variate with probability of success tp=60 for p=0:33; 0:5; 0:75.
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